Learning object boundary detection from motion data

نویسندگان

  • Michael G. Ross
  • Leslie Pack Kaelbling
چکیده

A significant barrier to applying the techniques of machine learning to the domain of object boundary detection is the need to obtain a large database of correctly labeled examples. Inspired by developmental psychology, this paper proposes that boundary detection can be learned from the output of a motion tracking algorithm that separates moving objects from their static surroundings. Motion segmentation solves the database problem by providing cheap, unlimited, labeled training data. A probabilistic model of the textural and shape properties of object boundaries can be trained from this data and then used to efficiently detect boundaries in novel images via loopy belief propagation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Systematic Approach to Learning Object Segmentation from Motion

This paper describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a pla...

متن کامل

Learning Object Segmentation from Video Data

This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plau...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Automatic Detection for Tracking Moving Objects in H.264 Video Sequences Using Multi-Features and Bi-Modal Gaussian Approximation

Automatic moving object detection is essential for various computer vision applications like video surveillance systems. Many previous moving object detection methods work for usually low-res video sequences under certain constraints. Either they perform detection process based on background learning and/or pixel-level motion analysis or they focus on detecting particular objects such as faces....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002